If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-36x-525=0
a = 2; b = -36; c = -525;
Δ = b2-4ac
Δ = -362-4·2·(-525)
Δ = 5496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5496}=\sqrt{4*1374}=\sqrt{4}*\sqrt{1374}=2\sqrt{1374}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{1374}}{2*2}=\frac{36-2\sqrt{1374}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{1374}}{2*2}=\frac{36+2\sqrt{1374}}{4} $
| 12x-19=10x+31 | | 15y=+12 | | x-8=4^(x+2) | | -3x-10=-46= | | A(n)=21+10n | | x5−9=−4 | | 1/3y-2/5=-1/4 | | 12=d+7 | | 6=5s+9 | | 5-4+7x+1=6x+8 | | .|x−3|=6 | | 5s=-3 | | 10x+10=2x+32 | | 5s+9=-3 | | -3+11c=5+12c | | 5-4(a-3)=a-2(a-1) | | 10-5(x-2)=2+4x | | 28.54=6g+3.52 | | 5x+19x-10=6(4x+6) | | |8n-9|+13=9 | | 5-4+7x+1=6x+0 | | 5+2(3x+4)=3x+19 | | -8(x-4)+2x=2 | | 19.7-6.4s=-8.1s+16+10.2s | | 8(4q-5)-7q=5(51-8) | | -18x+15=-8x-15 | | 2x-7+3x=2(x+1) | | 6x-12=3(x-2)+3x-6 | | 27=m-1 | | 8x=12-12 | | -5u+16=-4u | | 4(6+2a)=88 |